


# SW로 그리는 탄소중립의 미래

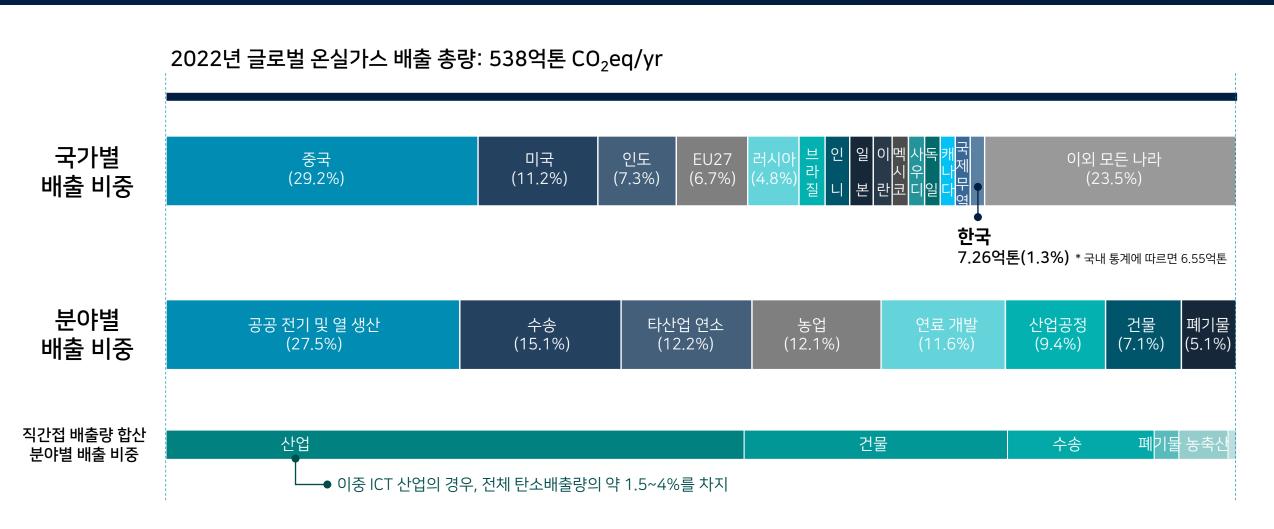
이은경 2024.07.19.



# 지구 평균기온의 상승으로 인한 생태계 붕괴 현상을 막기 위해서 2050년까지 순 탄소배출량을 0로 만드는 '탄소중립'을 반드시 달성할 필요



## <1.5°C 및 2°C 상승에 따른 주요 영향>


| 1.5°C                    | 2°C                                                                                                |
|--------------------------|----------------------------------------------------------------------------------------------------|
| 높은 위험                    | 매우 높은 위험                                                                                           |
| 3℃ 상승                    | 4°C 상승                                                                                             |
| 4.5℃ 상승                  | 6℃ 상승                                                                                              |
| 70~90%                   | 99% 이상                                                                                             |
| 중간 위험                    | 높은 위험                                                                                              |
| 곤충 6%, 식물 8%,<br>척추동물 4% | 곤충 18%, 식물<br>16%, 척추동물 8%                                                                         |
| 6.5%                     | 13.0%                                                                                              |
| 중간 위험                    | 중간-높은 위험                                                                                           |
| 0.26~0.77mm              | 0.30~0.93mm                                                                                        |
| 100년에 한 번<br>(복원 가능)     | 10년에 한 번<br>(복원 어려움)                                                                               |
|                          | 높은 위험  3°C 상승  4.5°C 상승  70~90%  중간 위험  곤충 6%, 식물 8%, 착추동물 4%  6.5%  중간 위험  0.26~0.77mm  100년에 한 번 |

<sup>\*</sup> 출처: 버클리어스홈페이지(https://berkeleyearth.org/global-temperature-report-for-2023/); 기상청 기후정책과(2018), '지구온난화 1.5°C'



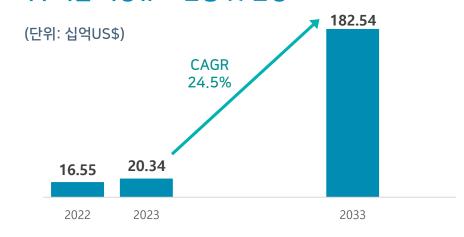


# 매년 배출되는 약 500억 톤의 탄소배출량을 0로 만들기 위해서는 모든 나라와 모든 산업이 적극적으로 탄소중립 정책과 기술을 수용하고 이행할 필요



<sup>\*</sup> 출처: JRC/IEA 2023 Report 'GHG emissions of all world countries'; 윤순진, '한국의 2050 탄소중립시나리오: 내용과과제 '; World Bank Group, 'Measuring the Emissions and Energy Footprint of the ICT Sector






# 탄소배출 감축과 기후위기 대응을 위한 '기후기술'이 국가 신성장동력으로 주목받으며 향후 10년 간 높은 성장세가 예상

### <기후기술 분류체계>

| 대분류           | 중분류             | 소분류                                      |
|---------------|-----------------|------------------------------------------|
|               | 1. 재생에너지        | 수력,태양광,태양열,지열,풍력,해양에너지,바이오에너지,폐기물        |
|               | 2. 신에너지         | 수소제조,연료전지                                |
|               | 3. 비재생에너지       | 청정화력발전·효율화,핵융합발전,원자력발전                   |
| 감축            | 4. 에너지저장        | 전력저장,수소저장                                |
|               | 5. 송배전·전력IT     | 송배전시스템,전기지능화기기                           |
|               | 6. 에너지수요(사용)    | 수송 효율화, 산업 효율화, 건축 효율화                   |
|               | 7. 온실가스고정       | CCUS(탄소포집·활용·저장), Non-CO <sub>2</sub> 저감 |
|               | 8. 농업·축산        | 유전자원·유전개량,작물재배·생산,가축질병관리,가공·저장·유통        |
|               | 9. 물            | 수계·수생태계관리,수자원확보및공급,수처리,수재해관리             |
| 적응            | 10. 기후변화예측및모니터링 | 기후예측 및 모델링, 기후정보경보시스템                    |
| <del>10</del> | 11. 해양·수산·연안    | 해양생태계,수산자원,연안재해관리                        |
|               | 12. 건강          | 감염질병관리,식품안전예방                            |
|               | 13. 산림·육상       | 산림생산증진,산림피해저감,생태·모니터링·복원                 |
| 감축/적응 융합      | 14. 다분야중첩       | 신재생에너지하이브리드,저전력소모장비,에너지하베스팅,인공광합성        |

## <기후기술 시장규모 현황 및 전망>



- ※ 맥킨지는 2030년 기후기술 시장을 9조달러로 전망하고, BCG는 2050년 기후기술 시장을 최대 60조달러까지 전망하는 등 기관마다 전망치의 차이가 존재
- ※ [참고] 기후기술, AR, VR/AR, 반도체의 시장규모 비교

|       | 2023   | 2033    | CAGR  |
|-------|--------|---------|-------|
| 기후기술  | 20.34  | 182.54  | 24.5% |
| Al    | 37.01  | 369.34  | 25.9% |
| VR/AR | 23.18  | 233.79  | 26.0% |
| 반도체   | 544.78 | 1137.57 | 7.6%  |

<sup>\*</sup>출처: 국가녹색기술연구소(2019), 녹색기후기술백서; FutreMarketInsight(2022), Climate Tech Market Outlook





# AI, 디지털 트윈 등을 비롯한 SW가 기후기술의 요소기술로서 탄소배출량 감축 및 측정, 위험 예측, 취약점 관리 등의 측면에서 중요한 역<u>할을 담당할 것으로 기대</u>

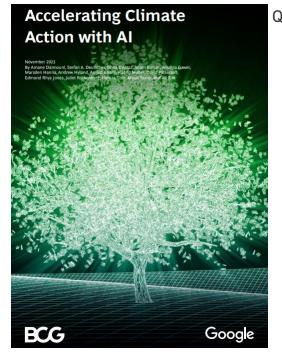
#### <SW 기반 기술로 인한 탄소배출 감축 기대치>

AI는 2030년까지 온실가스 배출의 5~10%를 줄일 잠재력 보유

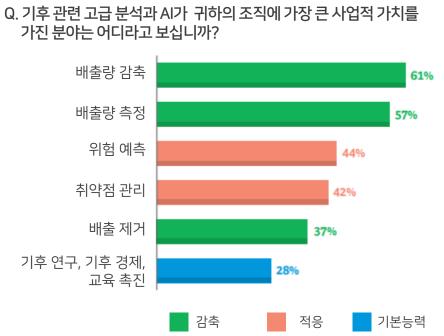
- Google and BCG(2023.11), Accelerating Climate Action with Al

5G·Al·loT·디지털 트윈 등의 디지털 기술은 2030년까지 글로벌 탄소 배출량을 15% 감축시키는 데 기여 가능

- Thierry Breton(EU 집행위원), COP26 기조연설 중(2021.10)


향후 3~5년 안에 AI가 탄소배출량을 16% 줄이고, 전력 효율을 15% 개선할 것으로 기대

- Capgemini(2021), Al to Power Climate Action Strategy


디지털 전환 가속화로 2030년까지 독일 탄소배출 감축 목표의 최대 50% 달성 가능

- Bitkom(2021), Klimaeffeckte der Digitalisierung

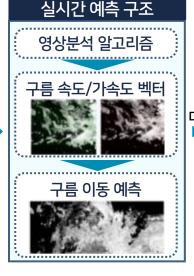
## <Google과 BCG의 'Accelerating Climate Action with Al'>

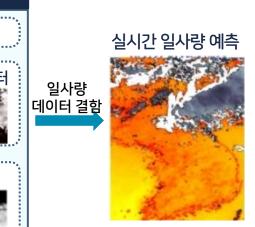


**SPRi** 





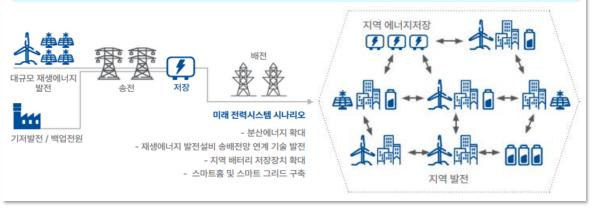

# [SW 활용 사례 1: 발전 분야] 재생에너지 발전량 예측 정확도를 높이고, 분산전원을 통합 관리하는 가상발전소(VPP)를 지원


#### <태양광 발전량 예측 오차를 획기적으로 개선>

- ▷ 재생에너지 발전량을 정확하게 예측하는 것은 청정 에너지 공급, 안정적인 전력계통 구축, 발전사업 수익과 연결되므로 탄소중립을 위해 반드시 필요
- ▷ 기후테크 스타트업 '식스티헤르츠'는 기상관측위성 천리안 2호 영상데이터, 자체 개발한 구름 이동 예측 알고리즘으로 예측 오차 2.6% 수준 달성

#### 식스티헤르츠의 빅데이터 처리 시스템 구조








#### < VPP로 소규모 분산전원 관리를 최적화>

- ▷ VPP란 소규모 분산전원을 클라우드 기반 SW로 통합해 하나의 발전소 처럼 관리하며 운영을 최적화하는 시스템
  - VPP 시장규모는 2020년 5.6억달러에서 2027년 25.9억달러로 연평균 약 25.7% 성장 예상(Global Information)
- ▷ 테슬라는 자사 배터리와 SW 기술을 기반으로 캘리포니아 및 일본, 호 주 등에서 VPP 사업을 운영
  - 머신러닝을 활용한 실시간 거래·제어 플랫폼 '오토비더'가 테슬라 VPP의 핵심 기술

#### 탄소중립을 위한 미래의 전력시스템



<sup>\*</sup>출처: 식스티헤르츠 홈페이지 및 관련 언론; 김자현(2023.11), 에너지 전환의 열쇠, 한국의 재생에너지 확대를 위한 유연성 자원 활성화 정책 제언, Solutions for our Climate Report





## [SW 활용 사례 2: ICT 산업 분야] 초저전력 AI 반도체 개발과 데이터센터 운영 최적화로 전력 소모를 최소화

#### <SW 최적화 기반의 전성비 높은 AI 반도체>

- ▷ KAIST 연구진이 400밀리와트 전력소모로 거대언어모델을 처리할 수 있는 초저전력 '상보형-트랜스포머' AI 반도체 개발
  - 입력 데이터의 크기에 따라 데이터 처리 신경망을 다르게 할당하여 전력 소모를 최소화
- ▷ 기후테크 스타트업 '리벨리온'은 자체 개발한 컴파일러, 펌웨어, 드라이 버, 런타임을 통해 SW 최적화를 이뤄 성능과 에너지효율을 높인 NPU '아톰' 개발
  - KT 클라우드는 2023년 5월, 서버에 아톰을 적용하여 GPU 활용대비 전력소모량을 5분의 1 수준으로 감축



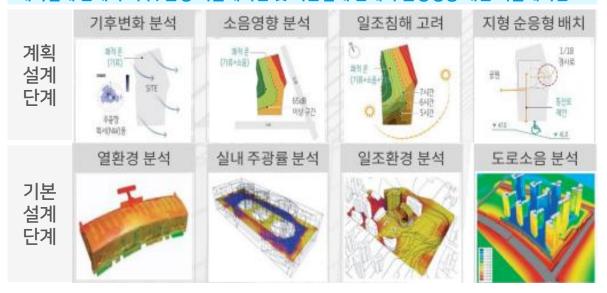


## <AI 활용한 최적화로 전력소모 낮춘 데이터센터>

- ▷ SKT는 트래픽에 따라 데이터센터 서버의 소비전력을 효율적으로 관리 및 제어하는 AI Power Saving 기술로 평균 42% 전력 절감 효과 확인
  - 통신 데이터센터 내 다수 서버군을 통합관리하면서 개별 서버 기능을 제어하여 소비전력을 감소








# [SW 활용 사례 3: 건물 분야] 설계와 시공부터 에너지 효율 최대화를 추진하고, 운영시에는 에너지를 실시간 분석해 에너지자립률 증진

## <시뮬레이션 분석을 활용한 설계와 AI 기반 BEMS를 통해 달성하는 제로에너지 빌딩>

- ▷ 건물 생애주기별 성능정보를 기반으로 에너지 최적화를 추구하고, 신축건물은 제로에너지화, 기존 건물은 그린리모델링을 통해 건물 분문 탄소배출 감축 건물 부문 최대 탄소배출량을 기록한 2018년 대비(52.1백만톤) 2030년까지 32.8% 감축을 목표
- ▷ 기후테크 스타트업 '에너지엑스'는 설계단계에서 기후/환경 및 환경성능 개선 시뮬레이션을 적용하고, 건물 운영에는 AI 기반 에너지 관리 시스템을 활용해 국내 최초로 에너지자립률 121.7%를 인증 받은 플러스 에너지 빌딩 준공

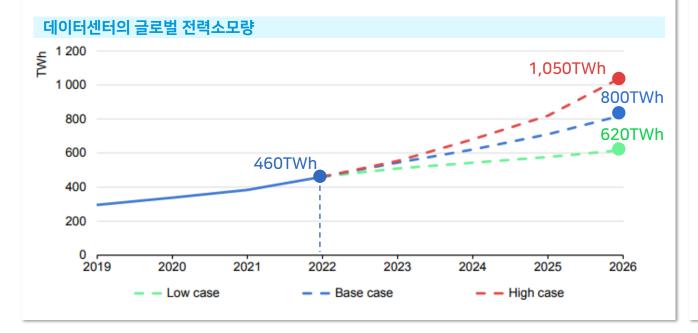
#### 계획설계 단계의 기후/환경 시뮬레이션 및 기본설계 단계의 환경성능 개선 시뮬레이션



#### 국내 최초 에너지자립률 100%를 넘긴 플러스 에너지 빌딩(에너지엑스)



단위면적당 1차 에너지 생산량 191.2kWh/m²·y


단위면적당 1차 에너지 소비량 157.1kWh/m²·y



# 반면, AI를 비롯한 디지털 기술은 데이터센터 전력 소모를 증가시켜 탄소배출이 늘어나는 원인으로도 작용

## <'전기 먹는 하마' 데이터센터의 전력 수요 현황 및 전망>

- ▷ 데이터센터의 연간 전력소모량은 2022년 기준 460TWh로 프랑스의 연간 전력소모량(420TWh)보다 크며, 2026년에는 최대 1,050TWh까지 증가 전망
  - 구글은 AI에 집중적으로 투자하면서 탄소배출량이 최근 5년간 48% 증가했고, MS도 2024년 5월 데이터센터 건설로 2020년 대비 탄소배출량이 33% 증가
  - → 2030년까지 탄소중립을 목표하던 빅테크 기업들의 목표 달성에 차질 발생



#### <AI 및 데이터센터의 탄소배출을 우려하는 시각들>

AI가 기후위기 해결에 도움이 된다는 주장은 잘못된 것, 에너지 사용 증가와 허위정보 확산으로 오히려 기후위기 가속화할 위험

- 글로벌 환경단체 연합(2024.3.7), AI Threats to Climate Change

2025년까지 AI가 환경에 미치는 영향을 더 잘 고려할 수 있도록 개발 방식을 재고하지 않으면 AI에너지 소비량이 전 인류의 에너지 소비량보다 더 많아질 것

- Gartner

GPT-3 훈련과정에서의 탄소배출량은 502톤(뉴욕-런던 600회 비행시 배출되는 양)이며, GPT-4는 6,912톤수준으로 추정

- Columbia Climate School(2023.6.9), ScaleDown(2023.12.10)

Arm CEO warns Al's power appetite could devour 25% of US electricity by 2030

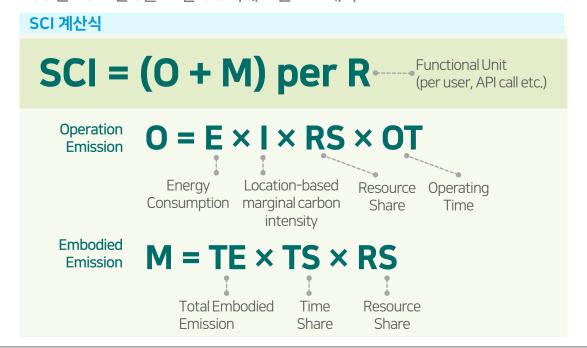
- The Register Forums (2024.4.9)

Al Is Pushing The World Toward An Energy Crisis

- Forbes(2024,5,24)



<sup>\*</sup>출처: IEA(2024), Electricity 2024: Analysis and forecast to 2026




# SW의 개발·배포·사용 과정에서 배출되는 탄소의 양을 측정하고 탄소배출이 적은 친환경 SW 생태계를 구축할 필요

## <SW로 인한 탄소배출의 객관적 지표 'SCI(SW Carbon Intensity)'>

▷ 각종 소프트웨어의 탄소발자국을 객관적으로 평가하기 위해 GSF(Green Software Foundation)가 개발한 SCI를 활용하면 대규모 분산 클라우드 시스템부터 스마트폰 애플리케이션까지 SW의 탄소배출 지표 계산 가능

- SCI는 2024년 3월 22일 ISO 국제 표준으로 채택



## <SCI 계산 사례: UBS 은행의 투자은행 앱과 자산관리 앱>

| 1a) 시간당 운영배출        |   |                     |   |               |   |                     |
|---------------------|---|---------------------|---|---------------|---|---------------------|
| Data source         |   | Central Application |   | National Gird |   | Central Application |
| Data source         |   | Database            |   | Database      |   | Database            |
| 시간당 운영배출            | = | 에너지(E)              | Х | 한계탄소강도(I)     | Х | 자원 사용 비율(RS)        |
| 투자은행 앱 (2.67kg)     | = | 13.6kWh             | Х | 0.5kg/kWh     | Х | 0.39                |
| 자산관리 앱 (24.80kg)    | = | 49.6kWh             | Х | 0.5kg/kWh     | х | 1                   |
| 1b) 연간 운영배출         |   |                     |   |               |   |                     |
| 연간 운영배출             | = | 시간당 운영배출            | х | 연간사용시간        |   |                     |
| 투자은행 앱 (23,389.2kg) | = | 2.67kg              | Х | 8760 hours    |   |                     |
| 자산관리 앱 (217,248kg)  | = | 24.8kg              | х | 8760 hours    |   |                     |
| 2a) 서버당 임베디드 배      | 출 |                     |   |               |   |                     |
| Data source         |   | Product             |   | Product       |   | Central Application |
| Data source         |   | Website             |   | Website       |   | Database            |
| 서버당 임베디드 배출         | = | 평균 HW 임베디드 배출       | х | 시간 사용 비율      |   | 자원 사용 비율(RS)        |
| 투자은행 앱 (113.52kg)   | = | 1158g               | Х | 0.25          | Х | 0.39                |
| 자산관리 앱 (303.5kg)    | = | 1214kg              | Х | 0.25          | Х | 1                   |
| 2b) 애플리케이션당 임베디드 배출 |   |                     |   |               |   |                     |
| 애플리케이션당 임베디드 배출     | = | 서버당 임베디드 배출         | Х | 사용 서버 수       |   |                     |
| 투자은행 앱 (1248.73kg)  | = | 113.53kg            | Х | 11            |   |                     |
| 자산관리 앱 (10015.5kg)  | = | 303.5kg             | х | 33            |   |                     |
| 3) SCI Rate 계산 (SCI | = | (O + M) per R)      |   |               |   |                     |
| SCI                 | = | (운영 배출              | + | 임베디드 배출)      | / | 기능                  |
| 투자은행 앱 (16.88kg)    | = | (23.389.2kg         | + | 1248.73kg)    | / | 1459 (users)        |
| 자산관리 앱 (631.29kg)   | = | (217,248kg          | + | 10015.5kg)    | / | 360 (users)         |







# 친환경 SW 생태계 구축으로 ICT 산업 분야 탄소배출을 줄이는 동시에, SW 기반의 기후기술에 대한 투자·개발·확산을 통해 2050 탄소중립을 달성할 필요



## <국내외 디지털 탄소중립 추진 정책>

|      | 산업 전반의 디지털 전환                                                                                                                                                          | ICT 산업의 저전력화·고성능화                                                                                               |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| **** | <ul> <li>스마트·디지털에너지 인프라 구축 및 전력망의 디지털화제고를 위한 투자 촉진(5,840억유로)</li> <li>에너지 절약 애플리케이션을 위한 유럽 공통 참고<br/>프레임워크 발표(23.5)</li> </ul>                                         | •데이터센터의 폐열 재사용, 환경 라벨링 제<br>도 도입, 네트워크의 지속 가능한 행동강령<br>등 수립                                                     |
|      | <ul> <li>loT 기반 에너지 인프라 통합 거래망 구축을 목표로 'loT 통합 연구' 프로그램 추진(670만달러)</li> <li>미국 국립연구소의 고성능 컴퓨팅을 활용해 제조 부문 탄소발자국 감축에 도움이 되는 연구를 진행하는 팀에게 180만 달러 지원 발표('23.1)</li> </ul> | •데이터센터의 에너지효율 제고를 위한 연<br>구개발, 제도개선 및 인력양성 등 추진                                                                 |
| **   | <ul> <li>석탄, 철강, 시멘트 등 전통산업의 디지털 전환 촉진을 통해<br/>저탄소 녹색성장 지향 ('22.8)</li> <li>정부, 산업, 기업 차원의 디지털 탄소관리시스템 구축</li> </ul>                                                   | • 지능형 에너지관리시스템을 통한 데이터센<br>터 및 네트워크의 전력 소모 최적화 추진                                                               |
|      | •재생에너지 실증단지를 모사한 디지털 트윈 시스템 개발 및<br>시뮬레이션 통한 재생에너지 잠재량 분석<br>•산재되어 있는 건물에너지 데이터를 연계·분석·평가할 수<br>있는 '국가 건물에너지 통합관리 시스템' 고도화                                             | • 고성능 국산 AI 반도체 기술 확보해 초저전<br>력·고성능 연산이 가능한 데이터센터 구축<br>(K-클라우드 프로젝트 1단계 사업(375.9<br>억원, '23년) 통해 민간·공공 부문에 적용) |

<sup>\*</sup> 출처: 관계부처 합동(2023.11.23), 디지털 전환을 통한 탄소중립 촉진방안; nipa 글로벌 ICT 월간동향리포트(2023.6월); 산업통상자원부&KIAT(2023.2), 중국 산업 디지털화·친환경화통합 발전 제언; 각종 관련 언론









