An incremental and DO-178C compliant
process for Autopilot software development
to make drones safer

ac 1Y () Hionos

Frédéric POTHON - ACG Solutions Amin ELMRABTI - Sogilis Valentin Brossard - Hionos
frederic.pothon@acg-solutions.fr amin@sogilis.com Valentin.brossard@hionos.com
Tel: (33)4. 67. 609.487 Tel: (33)4. 26.780.507 Tel: (33)6.31.691.836

www.acg-solutions.fr www.sogilis.com www.hionos.com

Agenda

1- Drones certification aspects

/'/> 2- CAP2018 project
> 3. AGILE SW life cycle

4- Multi supplements

Page 2

1- Drones certification aspects

= Ongoing works

= Drone classification

= Operations Risk-Based
= Open

= Certified o omen. SPECIFIC

» Classifications/categories still under discussion

» JARUS guidelines Specific Operations Risk Assessment (SORA) for
the drones Specific category.

= EASA shall develop AMC (Acceptable Means of Compliance) and
CSs (Certification specifications)

* Ongoing discussion on EUROCAE WG 105 work group to define
applicable standards.

We decide to anticipate and to develop drone software - C2®P2018
in compliance with DO-178C, Level A

Page 3

2- CAP2018 Project

CAP2018: Certified AutoPilot for 2018 c @on 18
Objectives. Develop a reliable and safe autopilot for civil

commercial drones (and Certified categories), compliant
with DO-178C, Level A in the software part.
Project Structure: (wp1 [wes
) SQUADRONE Hardware Platform
SVSTEN B J
(wp2 W E
Partners: ce sl Autopilot Certification Plans o
Soqilis g gr,
9
ACG-Solutions ‘Q@VP"; DO-178C Compliant ;,
AdaCore Sogilig development of the Autopilot o
wn
J 7]
M
Squadrone System Wpa V| 3
SNCE m Autonomous drone advanced features: 3
_ :i - Tracking a Target in mouvement g'.
CEA-Leti 3 - Collaborative drones =)
Gipsa-Lab L\— Detect & Avoid abostacles)L

2- CAP2018 Project

(u SDVP : Software Development and b g S S

Verification Plan /WP1 WP5

= SCMP : Software Configuration L y
Management Plan

(Wp2)

" SQAP : Software Quality Assurance Autopilot Certification Plans
Plan N J

= PSAC : Plan for Software Aspects of WP3 R
Certification DO-178C Compliant

= Standards (Specification, Design, development of the Autopilot

___Coding) J

S <
Mployment of an Agile Software
~lifecycle

= Deployment of various tools: Generic
Test Framework, AdaCore Tools (for

(WP4 A

Ada2012 and Spark), Requirement N
Manager Tools, Versioning
Manage i s Integration

C%®P201s8

Deployment of a Multi-supplement

rocesses
(.

3- AGILE Software Life Cycle

Basic principles

Incremental development

To develop progressively a limited number of new
functions/features. Iteration consists in adding/modifying some
features in the data developed during the previous iteration

cycles.

Test Driven Requirement

Tests cases and requirements developed in the same process.
All tests re-executed at each delivery

Continuous iImprovements

Application of plans and standards analyzed at the end of each
iteration and identification of possible improvements

3- AGILE Software Life Cycle

Life Cycle “processes”

software life cycle — (1) An ordered collection of processes determined by an
organization to be sufficient and adequate to produce a software product. (2) The
period of time that beqgins with the decision to produce or modify a software product
and ends when the product is retired from service.

DO-178C identifies several processes: planning, development
processes including requirements, design, coding, integration,
verification, CM, SQA, and certification liaison.

But is it possible to propose another “ordered collection of

processes”?

Page 7

3- AGILE Software Life Cycle

Life Cycle “processes”

Objective — When this document iz identiied az a means of compliance to the
regulations, the objectives are requirements that should be met to demonstrate

compliance.

The purpose of the life cycle is to organize the activities in order to
satisfy the objectives. Activities are grouped to form processes

Process — A collection of activities performed in the software life cycle to produce a
definable output or product.

Yes, processes may be organized as needed to create
an efficient life cycle, and to satisfy the objectives

Page 8

3- AGILE Software Life Cycle

CAP 2018 Selected Life Cycle

Development and verification activities are grouped into “ticket”
A ticket is a “process”

Tickets are

* Type 1: Process or System Improvement
« Type 2: Software Requirements

« Type 3: Architecture

* Type 4. Component

« Type 5: Source code

« Type 6: Integration

* Type 7: PDI Instance

« Type 8: Problem Report

* Type 9 Delivery

3- AGILE Software Life Cycle

CAP 2018 Selected Life Cycle

Each ticket include several activities
Example Ticket Type 2: Software Requirements

Software requirement development

PDI usage domain definition

HW/SW interface description

Software test cases development

Software requirement self-check (no independence)
Software requirement review (independence)
Software Requirement coverage analysis

During implementation, tickets are re-assigned to ensure
Independence, when applicable

3- AGILE Software Life Cycle

CAP 2018 Selected Life Cycle

Based on ticket implementation, status changes

= Open at the ticket creation

= ToDo: To be implemented during the iteration

— Assigned: Resources identified and transition criteria met

= Implemented: Data developed and/or updated and verified (no
Independence)

= Verified: Data developed and/or modified verified with independence

= Done: at the end of iteration when all activities have been completed and in
case of errors or incompleteness, one or several Tickets Type 8 have been
opened.

3- AGILE Software Life Cycle

CAP 2018 Selected Life Cycle

The iteration planning phase identifies a set of tickets to be
addressed during the iteration in regard of

- Transition criteria (defined for each ticket)
- Priorities

- Available resources

- Need for delivery

Problems are recorded into ticket type 8. They are analyzed and
one or several tickets of other types are created to correct the
problem.

3- AGILE Software Life Cycle

CAP 2018 Selected Life Cycle

Planning Process

lteration
planning

Ticket (s)
Implementation

v

Software
delivery

oy

SAS Sw
SCI product

4- Multi-Supplements

Component development: 3 methods may be applied:

« Simulink Model and QGen qualified code generator

=> D0O-331/ED-218 - Model Based Supplement (and tool
gualification)

« Formal Model (SPARK functional specifications also called
Contracts)

=> D0O-333/ED-216 Formal Model Supplement (and tool
gualification)

« Textual requirements in natural language and use of Object
Oriented Technigues

=> D0O-332/ED-217 OOT Supplement

Page 14

4- Multi-Supplements

Our rules:
- One component = One method: No mix of methods inside the
same component

- Considerations on architecture
Decomposition allows the component development using a
single development method

- Simulink Model is identified as a single component in the
architecture. All requirements allocated to Simulink model are
allocated to that component

4.1- Multi-Supplements - Model

Model Development with Simulink and QGen

One software requirement => One or several functional “blocks”
The blocks may be decomposed in sub-blocks as necessary.

As part of this decomposition, the developer identifies in each
development branch when a block represents a component
requirement.

Then a trace data is provided between the block and one or
several software requirements.

No derived requirements in the model

Trace data developed using naming convention between block
name and Requirement_Id

Code Ada generated with QGen (Qualified as Criteria 1/TQL-1)

4.1- Multi-Supplements - Model

Model Verification

- Model simulation performed based on Software Requirements
allocated to the model.

- Reviews of simulation data (independence).
- Model coverage analysis
Use of Mathworks simulation environment and tools.

Credit claimed of using QGen on source code verification and
component tests

4.2- Multi-Supplements - OOT

Component Development using OOT features

OOQOT: Part of coding process (not design!)

Component requirements: Textual requirements (No OOT aspects)

Coding:
- One component < One Ada package. Use of naming convention

- UML class and/or sequence diagrams may be developed for the
component (optional)

- OOT implemented with Ada features

4.2- Multi-Supplements - OOT

Vulnerabilities analysis: Most of the vulnerabilities are
addressed through coding standard rules. Verification automated
with Gnatcheck tool.

Example: Inheritance : Combination of 3 means
Vulnerabilities directly addressed, as not possible in Ada2012
- multiple implementation inheritance
- class' attributes overriding

Limitations through coding standards:

- No static dispatch except for subclasses calling their parents.

- No deactivated code: In every overriding method, the first statement is the call to the
overridden method.

- multiple interface inheritance: a subclass cannot inherit from two interfaces having
the same procedure name

Pessimistic testing: When inheritance is used, all added behaviour is tested.

4.3- Multi-Supplements — Formal method

Component Development and verification using Ada
contracts

- Formal analysis is applied on component for which it is possible
to describe all their requirements in form of Ada contracts.

SPARK technology is based on

- Aformal model called SPARK contracts

- Aformal analysis performed on SPARK contracts using
GNATProve tool.

4.3- Multi-Supplements — Formal method

RMToel
HLR Software
Software Requirement Requnrement
Ticket Type 2
RMTool 1\\-
Cnn‘n_npnnent Contracts
Requirement
UR ‘ Pre/Post conditions
Component Requirement] . AdaCode in the .adb
Ticket Type 4 KReq : Ghost Code o
Test cases definition :
Ada ‘ PARK & A
) Code & Tests : Code
Code Implementation :
Ticket Type 5 '
Complete & Run Tests GnatProver
Test Coverage verification : Runtime Error checks
SPARK : Runtime Error checks
Text and Natural Language Flow Formal Methods Flow

Figure 12. Evolution of the development process with formal methods technigues
Page 22

4.3- Multi-Supplements — Formal method

Formal method: Key points

Credit claimed

Source code verification objectives (compliance to LLR, traceabillity,
accuracy, consistency) : Directly satisfied by the Formal analysis:
Components tests : Satisfied by the Formal analysis and the
property preservation between source and object code

“Soundness of method”
Description of the method in the PSAC, using international
publications references.

“Property preservation between source and object code”
Demonstration achieved through a second execution of the software
tests on EOC including the contracts in form of assertions

4.3- Multi-Supplements — Formal method

RMToel
LR Software ,/
Software Requirement Requnrement s’
Ticket Type 2
RMTool 1\\-
Cnn‘n_npnnent Contracts
Requirement
UR ‘ Pre/Post conditions
Component Requirement] . AdaCode in the .adb
Ticket Type 4 KReq : Ghost Code o
Test cases definition :
Ada ‘ PARK & A
) Code & Tests : Code
Code Implementation :
Ticket Type 5 '
Complete & Run Tests GnatProver
Test Coverage verification : Runtime Error checks
SPARK : Runtime Error checks
Text and Natural Language Flow Formal Methods Flow

Figure 12. Evolution of the development process with formal methods technigues
Page 27

4- Multi-Supplements

PSAC: DO-178C objective coverage presentation

Table A-6 example

TABLE A-6

TESTING OF OUTPUTS OF INTEGRATION PROCESS

DO178C/ED12C Software Process Activities references
Natural Natural Contract Model
sDVP B.4.2.D
1 Executable Object Code complies with high-level SDVP 6.8.2.D
reguirements. SDVP 6.12.2.A
S5DVP 6.4.2.D
5 Executable Object Code is robust with high-level SDVP 6.8.2.D
reguirements. SDVP 6.12.2.4
S5DVPB.6.2.C S5DVPB.V.2E
3 Executable Object Code complies with low-level SDVP6.7.2.F GNATProve | Qgen
requirements. SDVP 6.12.2.A Qualification | gualification
PSACE.2.2.2
5DVPB.6.2.C SDVPB.7.2.E
4 Executable Object Code is robust with low-level SDVP6.7.2.F GMNATProve | Qgen
requirements. SDVP 6.12.2.A Qualification | gualification
P5ACE.2.2.2
s Executable Object Code is compatible with target SDVP 6.4.2.D
computer.

Page 28

Conclusion

U

Safety

DO-178 Compliant
Software (DAL A)

Use of Formal Proof
> Mechanism

5 different Failsafes

(GPS, Com, Batt,
) Compass)

DO-178C

Pulsar Autopilot

Qﬂ

Features

5 Manual Flight
Automatic Flight

? (including takeoff and
landing)

Available for different
Frames and Electronics

HW / Frame agnostic

%

Configurability

Dedicated board for
customization

Free Software
> Development Kit

Free Librairies

Easily customizable

@ hionos.com

@ contact@hionos.com

