
Frédéric POTHON - ACG Solutions

frederic.pothon@acg-solutions.fr

Tel: (33)4. 67. 609.487

www.acg-solutions.fr

An incremental and DO-178C compliant
process for Autopilot software development

to make drones safer

Amin ELMRABTI - Sogilis

amin@sogilis.com

Tel: (33)4. 26.780.507

www.sogilis.com

Valentin Brossard - Hionos

Valentin.brossard@hionos.com

Tel: (33)6.31.691.836

www.hionos.com

Page 2

Agenda

1- Drones certification aspects

2- CAP2018 project

3- AGILE SW life cycle

4- Multi supplements

Page 3

1- Drones certification aspects

 Ongoing works

 Drone classification

 Operations Risk-Based

 Open

 Specific

 Certified

 Classifications/categories still under discussion

 JARUS guidelines Specific Operations Risk Assessment (SORA) for
the drones Specific category.

 EASA shall develop AMC (Acceptable Means of Compliance) and
CSs (Certification specifications)

 Ongoing discussion on EUROCAE WG 105 work group to define
applicable standards.

We decide to anticipate and to develop drone software

in compliance with DO-178C, Level A

Page 4

2- CAP2018 Project

Hardware Platform

Autopilot Certification Plans

DO-178C Compliant
development of the Autopilot

Autonomous drone advanced features:
- Tracking a Target in mouvement
- Collaborative drones
- Detect & Avoid abostacles

Exp
lo

itatio
n

 &
 D

isse
m

in
atio

n

WP1

WP2

WP3

WP4

WP5

 Objectives: Develop a reliable and safe autopilot for civil

commercial drones (Specific and Certified categories), compliant

with DO-178C, Level A in the software part.

 Project Structure:

 Partners:

 Sogilis

 ACG-Solutions

 AdaCore

 Squadrone System

 SNCF

 CEA-Leti

 Gipsa-Lab

 CAP2018: Certified AutoPilot for 2018

Page 5

2- CAP2018 Project

Hardware Platform

Autopilot Certification Plans

DO-178C Compliant
development of the Autopilot

Autonomous drone advanced features:
- Tracking a Target in mouvement
- Collaborative drones
- Detect & Avoid abostacles

Exp
lo

itatio
n

 &
 D

isse
m

in
atio

n

WP1

WP2

WP3

WP4

WP5

 SDVP : Software Development and
Verification Plan

 SCMP : Software Configuration
Management Plan

 SQAP : Software Quality Assurance
Plan

 PSAC : Plan for Software Aspects of
Certification

 Standards (Specification, Design,
Coding)

 Deployment of an Agile Software
lifecycle

 Deployment of various tools: Generic
Test Framework, AdaCore Tools (for
Ada2012 and Spark), Requirement
Manager Tools, Versioning
Management, Continuous Integration

 Deployment of a Multi-supplement
processes

Page 6

Basic principles

- Incremental development

To develop progressively a limited number of new

functions/features. Iteration consists in adding/modifying some

features in the data developed during the previous iteration

cycles.

- Test Driven Requirement

Tests cases and requirements developed in the same process.

All tests re-executed at each delivery

- Continuous improvements

Application of plans and standards analyzed at the end of each

iteration and identification of possible improvements

3- AGILE Software Life Cycle

Page 7

Life Cycle “processes”

DO-178C identifies several processes: planning, development

processes including requirements, design, coding, integration,

verification, CM, SQA, and certification liaison.

But is it possible to propose another “ordered collection of

processes”?

3- AGILE Software Life Cycle

Page 8

Life Cycle “processes”

The purpose of the life cycle is to organize the activities in order to

satisfy the objectives. Activities are grouped to form processes

Yes, processes may be organized as needed to create

an efficient life cycle, and to satisfy the objectives

3- AGILE Software Life Cycle

Page 9

CAP 2018 Selected Life Cycle

Development and verification activities are grouped into “ticket”

A ticket is a “process”

Tickets are

• Type 1: Process or System Improvement

• Type 2: Software Requirements

• Type 3: Architecture

• Type 4: Component

• Type 5: Source code

• Type 6: Integration

• Type 7: PDI Instance

• Type 8: Problem Report

• Type 9 Delivery

3- AGILE Software Life Cycle

Page 10

CAP 2018 Selected Life Cycle

Each ticket include several activities

Example Ticket Type 2: Software Requirements

• Software requirement development

• PDI usage domain definition

• HW/SW interface description

• Software test cases development

• Software requirement self-check (no independence)

• Software requirement review (independence)

• Software Requirement coverage analysis

During implementation, tickets are re-assigned to ensure

independence, when applicable

3- AGILE Software Life Cycle

Page 11

CAP 2018 Selected Life Cycle

Based on ticket implementation, status changes

 Open at the ticket creation

 ToDo: To be implemented during the iteration

 Assigned: Resources identified and transition criteria met

 Implemented: Data developed and/or updated and verified (no

independence)

 Verified: Data developed and/or modified verified with independence

 Done: at the end of iteration when all activities have been completed and in

case of errors or incompleteness, one or several Tickets Type 8 have been

opened.

3- AGILE Software Life Cycle

Page 12

CAP 2018 Selected Life Cycle

The iteration planning phase identifies a set of tickets to be

addressed during the iteration in regard of

- Transition criteria (defined for each ticket)

- Priorities

- Available resources

- Need for delivery

Problems are recorded into ticket type 8. They are analyzed and

one or several tickets of other types are created to correct the

problem.

3- AGILE Software Life Cycle

Page 13

CAP 2018 Selected Life Cycle

3- AGILE Software Life Cycle

Page 14

Component development: 3 methods may be applied:

• Simulink Model and QGen qualified code generator

=> DO-331/ED-218 - Model Based Supplement (and tool

qualification)

• Formal Model (SPARK functional specifications also called

Contracts)

=> DO-333/ED-216 Formal Model Supplement (and tool

qualification)

• Textual requirements in natural language and use of Object

Oriented Techniques

=> DO-332/ED-217 OOT Supplement

4- Multi-Supplements

Page 15

Our rules:
- One component = One method: No mix of methods inside the

same component

- Considerations on architecture

Decomposition allows the component development using a

single development method

- Simulink Model is identified as a single component in the

architecture. All requirements allocated to Simulink model are

allocated to that component

4- Multi-Supplements

Page 16

Model Development with Simulink and QGen

- One software requirement => One or several functional “blocks”

- The blocks may be decomposed in sub-blocks as necessary.

- As part of this decomposition, the developer identifies in each

development branch when a block represents a component

requirement.

- Then a trace data is provided between the block and one or

several software requirements.

- No derived requirements in the model

- Trace data developed using naming convention between block

name and Requirement_Id

- Code Ada generated with QGen (Qualified as Criteria 1/TQL-1)

4.1- Multi-Supplements - Model

Page 17

Model Verification

- Model simulation performed based on Software Requirements

allocated to the model.

- Reviews of simulation data (independence).

- Model coverage analysis

Use of Mathworks simulation environment and tools.

Credit claimed of using QGen on source code verification and

component tests

4.1- Multi-Supplements - Model

Page 18

Component Development using OOT features

OOT: Part of coding process (not design!)

Component requirements: Textual requirements (No OOT aspects)

Coding:

- One component  One Ada package. Use of naming convention

- UML class and/or sequence diagrams may be developed for the

component (optional)

- OOT implemented with Ada features

4.2- Multi-Supplements - OOT

Page 19

Vulnerabilities analysis: Most of the vulnerabilities are

addressed through coding standard rules. Verification automated

with Gnatcheck tool.

Example: Inheritance : Combination of 3 means
Vulnerabilities directly addressed, as not possible in Ada2012

- multiple implementation inheritance

- class' attributes overriding

Limitations through coding standards:

- No static dispatch except for subclasses calling their parents.

- No deactivated code: In every overriding method, the first statement is the call to the

overridden method.

- multiple interface inheritance: a subclass cannot inherit from two interfaces having

the same procedure name

Pessimistic testing: When inheritance is used, all added behaviour is tested.

4.2- Multi-Supplements - OOT

Page 21

Component Development and verification using Ada

contracts

- Formal analysis is applied on component for which it is possible

to describe all their requirements in form of Ada contracts.

SPARK technology is based on

- A formal model called SPARK contracts

- A formal analysis performed on SPARK contracts using

GNATProve tool.

4.3- Multi-Supplements – Formal method

Page 22

4.3- Multi-Supplements – Formal method

Page 23

Formal method: Key points

Credit claimed

Source code verification objectives (compliance to LLR, traceability,

accuracy, consistency) : Directly satisfied by the Formal analysis:

Components tests : Satisfied by the Formal analysis and the

property preservation between source and object code

“Soundness of method”

Description of the method in the PSAC, using international

publications references.

“Property preservation between source and object code”

Demonstration achieved through a second execution of the software

tests on EOC including the contracts in form of assertions

4.3- Multi-Supplements – Formal method

Page 27

4.3- Multi-Supplements – Formal method

Page 28

PSAC: DO-178C objective coverage presentation
Table A-6 example

4- Multi-Supplements

Page 29

Conclusion

Page 30

Conclusion

Page 31

Conclusion

Page 32

Conclusion

Page 33

Pulsar Autopilot

hionos.com

contact@hionos.com

Safety Features Configurability

DO-178 Compliant

Software (DAL A)

Use of Formal Proof

Mechanism

5 different Failsafes

(GPS, Com, Batt,

Compass)

Manual Flight

Automatic Flight

(including takeoff and

landing)

Available for different

Frames and Electronics

Dedicated board for

customization

Free Software

Development Kit

Free Librairies

DO-178C HW / Frame agnostic Easily customizable

