
Innovation and efficiency for

Safety Requirements Validation

Continuous and Automatic Safety Requirements Validation
all along the Development Process

Foreword

 Presentation objectives:

 Be informative on the recent progress of the state-of-the-art in safety
verification techniques

 Present an innovative approach enabling to prevent the safety
requirements violations all along the development process

 As the approach is supported by an easy-to-use industrial tool,
propose a method immediately applicable to any embedded system
project

Agenda

 Argosim Company

 Classic safety validation approaches and their limits

 Reviews

 Formal Verification Techniques

 An innovative approach: continuous safety requirements
validation all along the development process

 Conclusion

Argosim Company Profile

 Company created in 2013 in Grenoble (France). STIMULUS released in early 2015.

 STIMULUS users in avionics, automotive, transportation, energy.

 International presence: USA, UK, Germany, Spain, Israel, Japan, China, Korea, India

Agenda

 Argosim Company

 Classic safety validation approaches and their limits

 Reviews

 Formal Proof

 An innovative approach: continuous safety requirements
validation all along the development process

 Conclusion

Safety Requirement Engineering: State of the Art

System analysis: MBSE (SysML) tools

 Use cases, functions, architecture… but

complex & no simulation

Language formalization: in-house

methods/tools, “boiler plates”

 Avoid natural language ambiguities

Formal verification: proof tools, MBSA

 Expertise required & scalability issues

Language verification: ontological tools

 Very heavy to deploy

Requirements definition: Natural language

 Reference for safety-critical standards

Requirements management: Doors, Reqtify…

 Versioning & traceability features

Common

Practice

Advanced

Practice

R&D

Practice

Classic Safety Requirements Validation: Reviews

 Objectives:
 Verify that an artefact meets always a set of properties defined as “safety properties”

 The artefact can be a specification, a design model or the actual implementation

 Reviewers should not be the artefact producers (independent review)

 Limits:
 Manual work: tedious, costly, review errors can be made

 Expert reviewers often good at detecting problems but can only achieve a limited level
of confidence

 Conclusion: can find safety violations but can’t produce a high level of
confidence that the safety properties are met

Advanced Safety Requirements Validation: Formal Proof

 Objectives:
 Verify that an artefact meets always a set of properties defined as “safety properties”

 The artefact can be a formal specification or a design model (Simulink, SCADE)

 When a proof is produced, a very high level of confidence is achieved

 Limits:
 A lot of manual work to define the properties to be verified

 Language to be used requires formal methods experts so the approach can’t be widely
deployed

 Difficult scalability issues often prevent getting any result

 Conclusion: even though formal proof seems very attractive, it can rarely be
used as the key method for safety properties verification

Agenda

 Argosim Company

 Classic safety validation approaches and their limits

 Reviews

 Formal Proof

 An innovative approach: continuous safety requirements
validation all along the development process

 Conclusion

Innovative Safety Validation: pre-requisites

 Deploying an effective verification method requires to:
 Respect the industry practices as much as possible. For instance, safety properties are

extracted from the requirements which are expressed in natural language. So, the
formulation of the properties should be as close as possible to natural language

 Use a tool that automates the verification

 The tool should be user-friendly to be accepted by practitioners

 The safety verification should be applied as early as the requirements engineering phase
and be applicable then easily to all the following phases (design, coding, testing)

Object to
be Verified

Safety
Properties

Verification Tool

Specification
(set of Requirements)

Design Model

Implementation

When lightIntensity is less then 60 % for more than 1 second ,
then headlight shall be ‘ON

Innovative Safety Requirements Validation: Basic Concepts

 Requirements:
 All functional Requirements can be written using a set of templates

 Example:

 Natural language requirement: “When the switch is AUTO and the light intensity is less than
60% for more than one second, headlight shall be set to ON”

 Equivalent template-based requirement:

Or, in Korean:

condition

action

Innovative Safety Requirements Validation: Basic Concepts

 Each template has an executable semantics

Benefits: Debug the Requirements as soon as your write them

Possible Execution of the System

When lightIntensity is less then 60 % for more than 1 second ,
then headlight shall be ‘ON

Innovative Safety Requirements Validation: Basic Concepts

 Use Case: a set of constraints on the inputs
and between the inputs

 Example:
 Vhcl_Acceleration ∈ [0 ; 5]

 When LaneChange_Conditions = NOK,

Stirring_Mode = Manual

One possible Test Vector

15 possible Test Vectors

One Use Case can be turned into
as many Test Vectors as desired

(Automatic Test Vectors Generation)

Validate Specification vs Safety Requirements

 Principle:
 Define the safety properties as Observer

 Apply the test cases generated from the Use Cases to the Requirements

 The Observer will detect any safety properties violation

Benefits:

RequirementsUse Cases

Safety Observer

Observer

Benefits: Validate the Specification vs the safety properties automatically

Validate Implementation vs Safety Requirements

 Principle:
 Reuse the Observer containing the safety properties

 Generate code from the Design and compile it into a DLL

 Apply the test cases generated from the Use Cases to the DLL

 The Observer will detect any safety properties violation

Benefits:
1. Validate the Implementation vs the safety properties automatically
2. Validate the Implementation vs the System Requirements (put the requirements

into the Observer)

Design
or

Code

Use Cases

Safety Observer

Observer

Validate System vs Safety Requirements

 Principle:
 Apply the test cases generated from the Use Cases to the system in its testing environment

 Record all I/Os into a log file

 Load the log file (formatted in CSV) and the Observer will detect any safety properties violation

Benefits:
1. Validate the System vs the safety properties automatically
2. Validate the System vs the System Requirements (put the requirements into

the Observer)

Safety Observer

Observer

Test Log

File

Theoretical and Technical Backgrounds

Compiler

Data constraints:
- Logico-numerical solver
processing the relationships
among data

- Control graph
- Backtrack mechanism

+ +

Simulator

Constraints over variables

BDD (Binary Decision Diagrams) + convex
polyhedra

Automatic Safety Validation

Where is this approach used?

 Countries: Europe, Japan, USA

 Domains:

 Transportation: signalling systems, embedded systems on
trains and metros, ground systems

 Automotive: Engine control, ADAS, Body control

 Aerospace/Defence: automatic pilots, airborne radars, on-
board fuel management systems…

 Energy: Nuclear Plants control and command systems

 Any application with safety / high integrity
constraints

Agenda

 Argosim Company

 Classic safety validation approaches and their limits

 Reviews

 Formal Proof

 An innovative approach: continuous safety requirements
validation all along the development process

 Conclusion

Safety Requirement Engineering: New State of the Art

System analysis: MBSE tools

 Use cases, functions, architecture… but

complex & no simulation

Language formalization: in-house

methods/tools, “boiler plates”

 Avoid natural language ambiguities

Formal verification: proof tools, MBSA

 Expertise required & scalability issues

Language verification: ontological tools

 Focus on the form than the semantics

Requirements definition: Natural language

 Reference for safety-critical standards

Requirements management: Doors, Reqtify…

 Versioning & traceability features

Common

Practice

Advanced

Practice

R&D

Practice

Conclusion

 Safety Activities Start from the Specification
phase but consist essentially in manual
reviews

 The State-of the-Art has changed: you can
now actually debug the requirements…

Specification
Safety

Properties
Compliance ?

…and assess automatically the specification
compliance to the safety requirements

Safety
Properties

Conclusion

 Then, during all the development process
the safety properties can be reused as
“Virtual Guides” (Observers) that will
detect automatically violations of the
Safety

Safety Observer

 Safety Engineers remain the safety
process pilots but they can make the
Observers available to any actor of the

Safety Observer

development process: System Architects,
Designers, SW Engineers, Validation Teams…

Design,
Code,

System

Safety
Properties

Compliance ?

Conclusion

Thank you ! 감사합니다

Questions?

yves.genevaux@argosim.com

